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In chaotically driven nonlinear dynamical systems, weak generalized synchrony can arise through distinct
scenarios or routes in a manner similar to the onset of low-dimensional chaos or the creation of strange
nonchaotic attractors in quasiperiodically driven systems. The limit sets of the dynamics for weak generalized
synchronization are nonchaotic—the Lyapunov exponent is nonpositive—and are geometrically strange. Quan-
titative measures related to the parameter sensitivity exponent and finite-time Lyapunov exponent distributions
can be defined in order to characterize generalized synchronization.
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The resurgence of interest in the synchronization of non-
linear dynamical systems in recent years has given the in-
sight that there can be several different forms of synchrony
in coupled systems �1�. Depending on the form of the
coupling—whether uni- or bidirectional—and on the nature
of the dynamics, there can be complete �2�, lag �3�, or phase
�4� synchronization, while in extended dynamical systems
�5�, or when there is time delay, other forms of synchrony are
known �6�.

When one nonlinear dynamical system is unidirectionally
modulated by another, generalized synchronization �GS� can
result �7,8� if the driving is of appropriate strength. Given a
drive with dynamics

u̇ = F�u� �1�

and response system

ẋ = G�x,u� , �2�

GS implies the existence of a unique functional dependence
x=��u� �7� when the vectors fields of the drive and re-
sponse, F and G, are continuous and differentiable. Regimes
of GS are defined as either strong or weak depending on
whether � is differentiable or not �9,10�. The presence of GS
can be determined, for example, by constructing copies of
the response system

ẋ� = G�x�,u� �3�

and examining the complete synchronization between x and
x� �11�.

Extensive studies of systems such as Eqs. �1� and �2� in
the past decades, particularly for chaotic dynamics in u in the
so-called “master-slave” scenario �2�, have established that
complete synchronization occurs when subsystem Lyapunov
exponents �in effect, those characteristic of the slave system�
are all nonpositive. Similarly, nonautonomous systems with
periodic, quasiperiodic, or stochastic driving have been stud-
ied in the context of synchronization as well, and the manner
in which systems subject to a common noise show synchro-
nization has been addressed in a number of studies �12,13�.
Nevertheless, an understanding of how synchronization
comes about in such general settings is still incomplete.

In this work, we show that GS can occur via distinct
bifurcation routes. Such scenarios have been described ear-

lier for the onset of low-dimensional chaos �14�, and we find
that the different scenarios through which weak GS occurs in
chaotically driven dynamical systems have parallels in the
routes by which strange nonchaotic attractors can be formed
in quasiperiodically driven systems. These include analogs of
the blowout, doubling, and saddle-node bifurcations, as well
as fractalization. Our results are illustrated below for driven
mappings for simplicity, although we have verified that simi-
lar behavior occurs in continuous-time dynamical systems as
well �15�.

As a model for the response, we first consider a dynami-
cal system introduced by Grebogi et al. �17�:

xn+1 = 2r tanh xn cos 2�un, �4�

where x�R and r�0, and u is the drive. The chaotic drive
that we employ is provided by the series �u� in the general-
ized baker map �16�,

un+1 = �bun, vn � a ,

b + �1 − b�un, vn � a ,
� �5a�

vn+1 = �vn/a , vn � a ,

�vn − a�/�1 − a� , vn � a ,
� �5b�

with a=b=0.45.
When the map, Eq. �4�, is subject to a quasiperiodic drive,

for example, through the irrational rigid rotation

un+1 = un + � mod 1, �6�

with � chosen to be an irrational number �such as the inverse
golden mean ratio �= �	5−1� /2�, it has been shown that the
resulting attractor is both strange and nonchaotic above r
=1 �17,18�. The dynamics that obtains from the chaotic
baker drive for a typical set of initial conditions is shown in
Fig. 1. This orbit is also stable, in the sense that two copies
of the response driven by a common chaotic drive will show
perfect synchrony �11�. The subsystem Lyapunov exponent
is negative, and it may be possible to show, using arguments
that parallel the quasiperiodic case �17�, that the limit set in
Fig. 1�b� is strange and nonchaotic. By changing the initial
conditions on the drive, the dynamics of the response is al-
tered, although qualitatively it remains similar. Since the
functional dependence of x on u is nonsmooth—i.e., nondif-
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ferentiable—as shown by the graph in Fig. 1�b�, a regime of
weak GS is manifested �9,10�.

The similarity with the strange nonchaotic dynamics cre-
ated by quasiperiodic driving �19� is both qualitative and
quantitative, and this can be seen by considering the driven
logistic mapping

xn+1 = �xn�1 − xn��1 + � cos 2�un� , �7�

where a number of other scenarios are known for the creation
of strange nonchaotic attractors �SNAs� when u is quasiperi-
odic. These are the so-called fractalization �20�, torus colli-
sion �21�, and intermittency routes �22� that have their origin
in crises and period-doubling and saddle-node bifurcation
routes to chaos in unforced systems. The dynamical phase
diagram for the chaotically forced logistic mapping is shown
in Fig. 2, and the gross similarity to the dynamical states

obtained via quasiperiodic driving is evident �22�. The entire
region of nonchaotic dynamics �the white region in Fig. 2�
exhibits generalized synchrony, and this can be further di-
vided into weak and strong GS regions. The boundary sepa-
rating the two regimes is estimated from the Lyapunov
dimension �9�.

A systematic exploration of the parameter space shows
that there are parallels between the transition to weak GS and
the creation of SNAs in the corresponding quasiperiodically
driven system. We briefly describe these below, highlighting
the similarities as well as the differences.

Fractalization. In this scenario, the single-valued graph
x�u� gradually wrinkles to become nonsmooth, as can be
judged by, say, the Hölder exponent �10�. Like the case of
quasiperiodic fractalization �20�, there is no abrupt transition
as at a bifurcation. However, strong GS transforms to weak
GS; see Fig. 3�a�.

Doubling collisions. For sufficiently small values of the
parameters � or ��, the graph x�u� is single valued and
smooth. As the parameters are increased, there is period dou-
bling and the graph x�u� becomes double valued. With in-
creasing parameter, the two branches of the graph wrinkle
and eventually collide, forming a nonsmooth graph. The con-
ditional Lyapunov exponent remains negative, and hence this
is a case of weak GS. In the quasiperiodic case, the collision
of the two branches of the doubled orbit occurs simulta-
neously with their collision with the unstable parent orbit
�21�, whereas this is not the case here; see Fig. 3�b�.

Intermittency. In the intermittency scenario, a saddle-node
bifurcation leads to an intermittent dynamical state �22� in
which the subsystem Lyapunov exponent is negative. The
graph x�u� is multivalued and nondifferentiable; see Fig.
3�c�.
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FIG. 1. �a� The subsystem Lyapunov exponent for Eq. �4� driven
by the chaotic baker map, Eq. �5a�, computed from an ensemble of
random initial x0 as a function of the parameter r; there is a blowout
bifurcation r=1. �b� Limit set for r=1.5 on which the dynamics are
both aperiodic and nonchaotic.
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FIG. 2. �Color online� Schematic phase diagram for the logistic
map driven by the chaotic baker map, Eq. �5a�, as a function of �
and rescaled parameter ��=� / �4 /�−1�. In the chaotic �black� re-
gions there is no synchronization, while there is GS in the noncha-
otic regions �white�. Regions of weak GS �wGS� and strong GS
�sGS� are separated by the red �gray� curve. Note a small window
of nonchaotic behavior corresponding to the period-3 orbit inside
the chaotic region.
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FIG. 3. Typical limit sets for nonsmooth or weak GS in the
driven logistic map, showing �a� fractalization ��=2.3, ��=0.7�
with 	=−0.572, �b� doubling collisions ��=3.2, ��=0.15� with 	
=−0.531 when there is the collision of the stable doubled graph
with its unstable parent, and �c� intermittency due to an interior
crisis inside the period-3 window ��=3.832, ��=0.03� with 	
=−0.264.

SINGH, NANDI, AND RAMASWAMY PHYSICAL REVIEW E 78, 025205�R� �2008�

RAPID COMMUNICATIONS

025205-2



In all the cases of weak GS above, different trajectories on
the graph x�u� will converge and eventually coincide as long
as they are started with the same initial conditions in the
drive u. The dependence on the chaotic drive can be quanti-
fied via measures akin to the phase sensitivity �23� and pa-
rameter sensitivity �20� exponents that have been introduced
earlier in the study of SNAs. In the present instance, the
sensitivity with respect to a system parameter �denoted here
by 
�

�N = min
x0,u0

� max
1�k�N


dxk

d


� �8�

proves to be more appropriate to use for characterization of
the limit sets. When the underlying structure is strange, this
quantity scales as a power law in the length of the orbit
�20�—namely, �N�N�.

Figure 4�a� shows the parameter sensitivity, with expo-
nent ��0.24, for a limit set in the map, Eq. �4�, at r=1.5.
Similar results for the driven logistic map, Eq. �7�, in the
weak GS region along the line �=3.3 for different �� values
are shown in Fig. 4�c�. When there is strong GS, the growth
of parameter sensitivity saturates and the exponent is zero; a
nonzero value for � indicates weak GS.

Additional characterization is provided by the distribution
of finite-time Lyapunov exponents that probe the local struc-
ture of the regions covered by the orbit in the phase space.
While the subsystem Lyapunov exponent �namely, that cor-
responding to the x dynamics� is indeed negative, over finite
time intervals the local Lyapunov exponent can be positive,

as on SNAs �23�. The distribution of finite-time Lyapunov
exponents �FTLEs� �24�, P�N ,	�, is the probability that the
Lyapunov exponent in a time interval N lies in �	 ,	+d	�.
When there is GS, the mean of this distribution is negative as
can be seen in Figs. 4�b�–4�d� and the distribution is essen-
tially normal for the cases of weak GS formed via the blow-
out �solid line�, fractalized �solid line�, and doubling �dashed
line� routes, in contrast to the analogous SNAs where there is
a characteristic exponential tail �23�. This is a consequence
of the chaotic drive: correlations die out rapidly and the
FTLEs satisfy the central-limit theorem �25�. In the intermit-
tency route �dotted line�, as in all instances of intermittent
dynamics �26�, there is an exponential tail that extends into
the positive-	 region; see Fig. 4�d�.

The above measures provide a quantitative characteriza-
tion of the weak GS state and should prove useful in the
analysis of experiments �27� where GS occurs. As has been
pointed out, GS is particularly important when considering
an interacting ensemble of dynamical systems that are non-
identical, as frequently arises in natural situations. Examples
can be drawn from numerous areas—physiological processes
�28�, neuronal systems �29�, ecological systems �30�, and
financial markets �31�, for instance. The emergence of syn-
chrony in such cases is both ubiquitous and unexpected,
since distinct dynamical systems would in general have very
different internal time scales.

Our main result in this work is that there are distinct
routes to weak GS—namely, characteristic mechanistic sce-
narios via which such motion is created. The limit sets of the
response dynamics, which are unique �if possibly multival-
ued� functions of the drive, bear a strong qualitative and
quantitative resemblance to corresponding attractors when
the motion is strange and nonchaotic. Indeed, strange non-
chaotic motion, which is observed in quasiperiodically
driven systems, should be properly viewed as a manifestation
of weak or nonsmooth GS. The present results also suggest,
by implication, that it may be possible to characterize the
state of generalized synchrony in a more definitive manner—
say, by a suitable extension of the results of Sturman and
Stark �32�.

We have verified the above observations in other maps
and flows, and with a variety of chaotic drives. Depending
on the nature of the drive dynamics �33�, though, the regime
of strong GS may not exist: all GS is weak. A complete
discussion of the different transitions from regimes of GS to
unsynchronized dynamics will be presented elsewhere �15�.

The creation of stable aperiodic behavior has been a ma-
jor objective in the study of driven dynamical systems both
from the point of view of applications �34� and as a means of
understanding the manner in which natural systems maintain
stability and rhythms in spite of their intrinsic stochasticity
�28,35,36�. Generalized synchronization is a robust process,
and the existence of definitive mechanisms through which
this objective can be achieved suggests that it can be engi-
neered and controlled in practical applications.

We thank Awadhesh Prasad for discussions and comments
on the manuscript and the CSIR, India for support of T.U.S.
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FIG. 4. �Color online� Measures to quantify the dynamics of
wGS in the chaotically driven mappings, Eq. �4� in �a� and �b� and
Eq. �7� in �c� and �d�. �a� Parameter sensitivity of a typical limit set
in Eq. �8� with r=1.5 showing power-law dependence with sensi-
tivity exponent ��0.24. �b� The probability distribution of finite-
time Lyapunov exponents �FTLEs� at this parameter value is Gauss-
ian. �c� Sensitivity exponent for the logistic map along �=3.3 for
different ��. At ��=0.14, ��0.04; ��=0.17, ��0.07; ��=0.21,
��0.28; and ��=0.23, ��0.77. �d� Probability distribution of
FTLEs for orbit segments of length N=50 for the three different
scenarios shown in Fig. 3: fractalization �solid line�, doubling
�dashed line�, and intermittency �dotted line�.
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